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By using the Green’s function approach we consider the adsorption of a Gaussian polymer chain on a flat
attractive interface separating two different media. The asymmetry of the potential requires a finite attraction
for adsorption. We have calculated the size of the polymer in the direction perpendicular to the interface for
arbitrary chain length. We also consider the adsorption of a self-avoiding polymer on a penetrable cylinderlike
and spherelike defect. The method used enabled us to describe the adsorption below the threshold temperature
Tc . We predict scaling of the crossover chain lengthNc just belowTc of the formNc;(Tc2T)21/f. The
crossover exponentf is given byf5nd21 with d52,3 for the case of the cylinder and the sphere, respec-
tively. The expression, which we derive forTc , shows that increasing the solvent quality lowersTc and may
therefore cause polymer desorption.@S1063-651X~96!11809-2#

PACS number~s!: 61.25.Hq

I. INTRODUCTION

Adsorption of polymers at surfaces and interfaces is one
of the most intensively studied topics in polymer science
@1–5#. The previous works consider both the adsorption of
chains at penetrable interfaces and at impenetrable surfaces.
While for the case of penetrable interfaces the adsorption
properties can be explained using the bulk properties of poly-
mer chains the understanding of polymer adsorption at solid
surfaces requires new critical exponents closely related with
the surface transition in magnetic materials.

The present work is concerned with a third case, that of
polymer adsorption at penetrable butasymmetricinterfaces.
One can imagine a polymer chain adsorbed at a membrane
separating two different solvents. However, the problem
emerges originally fromAB-copolymer adsorption at inter-
faces between two different solvents@6–8#. The generic
model of an asymmetric interface potential may be estab-
lished as follows:

V~z!52 lU 0d~z!1xQ~z!, ~1!

where l denotes the statistical segment length andQ(x) is
the step function:Q(x)5*2`

x dyd(y). The symbolx denotes
the asymmetry of the interface andU0 represents the effec-
tive interface attraction per statistical monomer unit. For
simplicity we takekT51. The above equation can be con-
sidered as the simplest nonsymmetric interface model con-
taining all the basic features. Figure 1 illustrates the abstrac-
tions made in Eq.~1!.

For an ideal chain consisting ofN statistical segments the
Green’s function in thez direction obeys the following equa-
tion:

]

]N
G~z,N;z0,0!2D

]2

]z2
G~z,N;z0,0!1V~z!G~z,N;z0,0!

50, ~2!

under the condition

G~z,0;z0,0!5d~z,z0!. ~3!

The constantD is defined through

D5 l 2/2d, ~4!

whered51 in the present case. Because of the ideal chain
property under the influence of the external potentialV(x) as
given in Eq.~1! all spatial directions are independent. There-
fore we can disregard thex andy contributions.

It is straightforward to see that the asymmetric interface
potential given in Eq.~1! provides a desorption phase
transitionat some critical temperatureTc . Considering only
the ground state solution of Eq.~2! using the potential of Eq.
~1!. Then the probability of finding the chain’s end at the
position z in the direction perpendicular to the interface
when the first segment is directly at the interface is given by
the ground state eigenfunctionfg of Eq. ~2! according to

fg5
kRkL
kR1kL

@e2kRxQ~x!1e1kLxQ~2x!# ~5!

with the conditions

kL1kR5
lU 0

D
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U
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, ~6!

and

FIG. 1. Model of the asymmetric interface potential.
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DkR
25DkL

21x, ~7!

where we have introduced the symbol

U5 lU 0 /AD, ~8!

as also used in the later discussion.
Equations~6! and ~7! together define the necessary con-

dition for existence of the ground state as

x,U2. ~9!

This defines a critical desorption temperature

kTc5
U2

x
. ~10!

The average end position and the squared average end posi-
tion can be calculated from the above results
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4Ux

~U22x!~U21x!
, ~11!

and
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kR1kL
5D

8U2~U413x2!

~U22x!2~U21x!2
. ~12!

For a finite chain lengthN the ground state will dominate
for N@Ncross, where the crossover chain lengthNcross is
given by

Ncross5
4

U2 S 12
x

U2D 22

. ~13!

ForN@Ncrossthe squared radius of gyrationR
2 is propor-

tional toNcrossbut does not depend onN. Thus the chain is
adsorbed at the interface. However, forN close toNcrossthe
ground state is no more absolutely dominant and also the
delocalized modes are contributing to the Green’s function.
The crossover behavior from the adsorbed into the nonad-
sorbed state cannot be obtained.

As soon as effects beyond the ground state dominance are
taken into account the problem at hand becomes more com-
plicated. We obtain the solution in terms of Green’s func-
tions in two steps. Firstly, the exact Green’s function is cal-
culated for the polymer near the potential stepx only.
Second, the Green’s function in the presence of thed poten-
tial is obtained by exact summation of all diagrams for the
additional interaction.

Note that even the simple potential step problem without
the attractive potential can be of significance. For instance,
the Green’s function of anAB-diblock copolymer made of a
A sequence of lengthNA and aB sequence of lengthNB can
be obtained by folding the two Green’s functions for theA
andB part, respectively, under the condition that the step is
just mirrored and scaled for theB part. This provides a so-
lution for the ideal surfactant problem for all combinations of
xA andxB as well as for all possible block lengthsNA and
NB .

The article is organized as follows. Section II introduces
to the computation of the Green’s function in the asymmetric

potential. Section III presents the results for the adsorption of
a Gaussian polymer in the asymmetric potential for both
large and intermediate chains. Section IV presents results of
adsorption of a self-avoiding polymer chain on penetrable
plane, cylinder and sphere. Section V contains our conclu-
sions.

II. THE GREEN’S FUNCTION OF THE POLYMER CHAIN

Let us consider the statistical weight of a configuration of
a polymer chain comprisingN monomers interacting with
the interface. The ends of the chain are fixed at the positions
r0 andr , respectively. In the continuous chain representation
it reads:

G~r ,N;r0,0!5E
r ~0!5r0

r ~N!5r
Dr ~s!expH 2

d

2l 2E0
N

ds~]r /]s!2

2E
0

N

dsV@r z~s!#J , ~14!

whereV@r z(s)# is the interaction energy of monomers with
the interface@see Eq.~1!#, r z is the projection of the vector
r in the direction perpendicular to the interface (r5r tr1r z)
andr tr denotes the projection ofr in the direction parallel to
the interface.

It is easy to see that the statistical weight associated with
the distance of the polymer to the interfacer z ,
G(r z ,N;r 0,z,0)5*dr trG(r z ,r tr ,N;r0,0), will become a one-
dimensional problem, since the transversal degrees of free-
dom can be integrated out. We start with computing
Gx(r z ,N;r 0,z,0) for the case when only the step potential in
~1! is nonzero. The differential equation for
Gx(r z ,N;r 0,z,0) is obtained from~14! as

]

]N
Gx2D¹z

2Gx1xQ~z!Gx50, ~15!

where we have used the notationz5r z . It is convenient to
consider the Laplace transform ofGx with respect toN.
Then Eq.~15! results in

pGx2P0~z,z0!2D¹z
2Gx1xQ~z!Gx50, ~16!

wherep denotes the Laplace conjugate with respect toN and
P0(z,z0)5Gx(t50,z;0,z0). For the proper Green’s function
P0(z,z0)5d(z,z0) has to be required. We have obtained
Gx from the solution of~16! with an arbitrary initial condi-
tion P0(z,z0) in half planesz,0 andz>0 and appropriate
boundary conditions forz→6`. Furthermore, we demand
that the functions and their derivatives are continuous at
z50. The result can be written as
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Gx~z,p;z0!5FG0~z2z0 ,p!Q~2z0!1
Ap2Ap1x

Ap1Ap1x

3G0~z1z0 ,p!Q~2z0!1
2Ap1x

Ap1Ap1x

3exp~zAp/D !G0~z0 ,p1x!Q~z0!GQ~2z!

1HG0~z2z0 ,p1x!Q~z0!1
Ap1x2Ap
Ap1x1Ap

3G0~z1z0 ,p1x!Q~z0!1
2Ap

Ap1Ap1x

3exp~2zA~p1x!/D# DG0~z0 ,p!Q~2z0!%

3Q~z!, ~17!

where G0(z,p)51/(2ADp)exp(2uzuAp/D) is the Laplace
transformation of the Green’s function of the ideal polymer
chain. Equation~17! correctly reproduces the limit case
x50 andx5`. For x→` Gx(z,p;z0) gives the Green’s
function for a half space with the boundary condition
G(z;p,z0)z5050. The corresponding result to Eq.~17! for
the case of a Schro¨dinger particle near a potential step was
recently obtained by Grosche@9# using path integral meth-
ods. Grosche starts with the explicit result for a smooth in-
terface potential of the formx/@11exp(2z/R)#. In the limit
R→0 the quantum mechanical counterpart of Eq.~17! is
obtained.

We now turn to the case of the full potential given in Eq.
~1!. The idea is to start with the path integral representation
of G(r x ,N,0,0) given by Eq.~14! and expand it in powers of
the d function by using the Green’s function in the step
potential as the reference state. The perturbation expansion
can be represented by means of diagrams consisting of a
continuous lines, representing the polymer chain, and inser-
tions along the line due to the interaction with the plane. This
is sketched in Fig. 2. The integrations over the positions of
the monomers along the chain~the variables) and over their
spatial positionsr z(s) are assumed in each vertex. The inte-
gration overr z(s) is killed through thed function. It is con-
venient to carry out Laplace transformation of
G(r z ,N;r 0,z,0) with respect to the chain lengthN. The sum-
mation of the perturbation series in Fig. 2 is straightforward
and we obtain

G~r z ,p;r 0,z!5Gx~r z ,p;r 0,z!

2Gx~r z ,p;0!
lU 0Gx~0,p;r 0,z!

12 lU 0Gx~0,p;0!
, ~18!

with Gx(r z ,p;r 0,z) given by Eq.~17!.
So far we have focused on the one-dimensional problem.

This was possible by fixing only the transversal position of
the end of the polymer chainr z(N). For applications it may
be relevant to study the adsorption of the polymer with fixed
longitudinal position too. The Green’s function including the
transversal variables is also necessary to study the adsorption
of self-avoiding chains on interfaces separating different sol-
vents. In order to get the complete Green’s function it is
convenient to consider the Fourier transform of
G(r z ,r tr ,N;r 0,z ,r0,tr ,0) with respect tor tr . Instead of Eq.
~16!, we now have to solve the following differential equa-
tion:

~p1Dktr
2 !G2G0~z,z0 ,ktr !2D¹z

2G1xQ~z!G50,
~19!

whereG[G(p,z,ktr) is the Fourier transformation of the
solution with respect tor tr and the Laplace transformation
with respect tot. It becomes apparent by comparing Eqs.
~16! and ~19! that the d-dimensional Green’s function
G(r z ,ktr ,p;r 0,z) ~Fourier transformed with respect to
r tr2r tr ,0) is obtained from Eq.~18! by replacing the Laplace
variablep throughp1Dktr

2

III. ADSORPTION OF A GAUSSIAN POLYMER
IN AN ASYMMETRIC POTENTIAL

In order to consider the adsorption of a polymer on a flat
interface we fix one end of the chain on the plane (r 0,z50)
and compute the average distance of the free chain endr z .
The mean-square distance of the free end of the polymer
chain to the interface is computed according to

^r z
2~N!&5

*dr tr*drzr z
2G~r z ,r tr ,N;0,r tr

0 ,0!

*dr tr*drzG~r z ,r tr ,N;0,r tr
0 ,0!

. ~20!

The problem becomes again one-dimensional after integrat-
ing over r tr . Using the Laplace transform of the numerator
and denominator of Eq.~20! we can write

^r z,p
2 &[

Zp
Yp

, ~21!

with Zp andYp obtained from~18! respectively, as

Zp5
2D

Ap1Ap1x

p23/21~p1x!23/2

12 lU 0D
21/2/~Ap1Ap1x!

, ~22!

Yp5
1

@p~p1x!#1/2
1

12 lU 0D
21/2/~Ap1Ap1x!

. ~23!

Zp andYp have a pole at a finite value ofp

pth5~U22x!2/~4U2!, ~24!

FIG. 2. Examples of diagrams representing the perturbation ex-
pansion of the Green’s function in powers of the external potential.
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with U given by Eq.~8! if the condition

U2.x ~25!

is satisfied. Notice that the chain length associated with
pth ,

Nc5pth
2154U2/~U22x!2, ~26!

can be interpreted as the longitudinal localization length. It
corresponds to the average length between two neighbor
contacts of the polymer with the interface. Compare it with
the crossover chain lengthNcrossgiven by Eq.~13!. Also the
result~25! can be directly compared with Eq.~9!. In the limit
of large chain lengthsN→` the main contribution of the
inverse Laplace transform appears from the residue associ-
ated with the pole. This pole gives an exponential increase of
the inverse Laplace transforms ofZp andYp proportional to
exp(Npth). This factor compensates from the numerator and
denominator of~20!, so that the rest does not depend onN.
The interpretation of this circumstance is that the polymer
chain is adsorbed on the interface. The computation of
limN→`^r z

2(N)& 5r z
2 is straightforward and results in

r z
258DU2

U413x2

~U21x!2
1

~U22x!2
, ~27!

in accordance with the ground state solution given in Eq.
~12!. The first preasymptotic term to~27! is obtained from
~22! and ~23! by using Watson’s lemma@10# as

^r z
2~N!&5r z

22
2D

Ap~U2Ax!
ANexpS 2

~x2U2!2

4U2 ND .
~28!

The exact inverse Laplace transformations of~22! and ~23!,
which is carried out in the Appendix, enables one to study

the adsorption of polymer chains for arbitrary finite length
N. The result of the numerical computation of^r z

2(N)& is
shown in Fig. 3.

IV. ADSORPTION OF A SELF-AVOIDING POLYMER
CHAIN ON A PLANE, LINE, AND POINT

In this section we consider the adsorption of a self-
avoiding polymer chain on various defects such as plane,
line, and point. We will see below that the line, and the point
imitate penetrable cylinder and sphere, respectively. The
chain is fixed with one end on the defect. We will describe
plane, line, and point by dimensionalityd, whered takes the
values 1, 2, 3 for plane, line, and sphere, respectively.

Analogous to the adsorption on the asymmetric potential
we expand the Green’s function in powers of the adsorption
energyU0 and the excluded volume interaction. The ex-
cluded volume interaction has a twofold effect. On the one
hand it renormalizes the bare Green’s functions, which are
associated in Fig. 4 with the parts of continuous lines be-
tween the insertionsU0 ~second and fifth diagrams! due to
the adsorbing potential. The latter is given by

Gsav~r z50,N;0!5E ddkzGsav~k,N;0!

.Z2
21~NZ3 /Z2!

2d/25Z2
21a21N2nd, ~29!

wherea is a constant which depends on the solvent quality,
i.e., characterized the strength of the excluded volume inter-
action. The countertermsZ2 andZ3 scale with the lengthl as
Z2; l2(g21)/n andZ3; l h, wheren, g, andh are the critical
exponents ofn50 componentF4 theory@12# and@13#. The
quantityN85NZ3 /Z2 scales asN

2n. This can be obtained by
identifying the length l with the gyration radius
Rg;(N8)1/2 in the expressions ofZ2 andZ3 and solving the
obtained equation forN8. Notice thatd in ~29! is restricted to
the condition nd,1. The reason is that fornd,1 the
Laplace transformation of the last expression in~29! with
respect toN exists. Fornd,1 the renormalization in~29!
can be carried out at zero momentumkz , so that the coun-
tertermZ2 is controlled by the lengthN of the polymer. For
d53, Gsav(r z50,N;0) is the partition function of a ring
polymer. The renormalization has to be carried out at the
momentumkz , which is inversely proportional to the dis-
tance between polymer endsr z . For r z→0, Z2 tends conse-
quently to one~see also@13#, Chap. XIII; @4#, Chap. IV!.

FIG. 3. The mean-square distance of the free end of the polymer
chain to the interface as a function of chain length. The thick con-
tinuous line is the exact result computed by using~A1!–~A2!. The
point line represents Eq.~A3!. The dash line gives the approximate
result computed by using~A5!. The thin line gives the asymptotic
value of r z

2 given by ~A4!.

FIG. 4. Examples of diagrams representing the perturbation ex-
pansion of the Green’s function in powers of the external potential
and excluded-volume interaction.
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The excluded volume interactions between the segments
being on different sides of the insertionu0 ~see the fourth
diagram in Fig. 4! renormalize the adsorption energyU0. We
have computed the renormalization ofU0 up to one-loop
order in the excluded volume strengthv0 and obtained that
the adsorption energy renormalizes likeZ2. One can show
that this is true to all orders inv0, so thatU0 renormalizes as

Ur5U0Z2 . ~30!

The universal part of the perturbation expansion of the
Green’s functionG(r z ,p;0) in powers of the adsorption en-
ergy can be summed up exactly to give

G~r z ,p;0!5
Gsav~r z ,p;0!

12 lU 0Z2Gsav~0,p;0!

.
Gsav~r z ,p;0!

12Ua21G~12nd!p211nd . ~31!

We see that the countertermZ2 appearing from the renormal-
ization of U compensates the prefactorZ2

21 in
Gsav(0,N;0). Exactly due to this compensation the de
Gennes’ probability argument@1# gives correct result for ad-
sorption on penetrable interfaces. The appearence ofn in the
nominator is a direct consequence of the resummation pro-
cedure. However, it is already known@5# that at the critical
point of adsorption the fractal dimension of the chain re-
mains unchanged. Notice that Eq.~31! is defined for
12nd.0. However, the expression~31! can be extended for
12nd<0 by introducing a cutoff on the microscopic lengths
~along the chain! l, so that the denominator of~31! will be
replaced for 12nd<0 by

12Ua21G~12nd!~p211nd2l12nd!, ~32!

where l should correspond to the characteristic extension
w of the cylinder or sphere. Apparently we have
(w/ l )d.lnd whenw is much larger than the statistical seg-
ment of the chain. Note that we have implicitely assumed in
Eq. ~32! that the Green’s functionGsav(0,p,0) is governed
by its universal behavior down to the cutoff valuel. If w is
of the order of the segment length we may havew/ l.l. At
the same time the cutoff term in Eq.~32! has to be replaced
by a functionl(w/ l ) depending on the microscopic details
of the chain statistics at the scalew. However, as we proceed
to show this impacts only the value ofTc @see Eq.~38! be-
low#, which is a nonuniversal quantity depending on the mi-
croscopic details of the problem. It has no consequences for
the critical behavior~scaling! near Tc . For simplicity we
discuss here the casew@ l . The condition for adsorption is
associated with the pole of Eq.~32! @compare with Eqs.~22!
and ~23!#.

The condition for adsorption can be also obtained from
~31! by demanding that the pole,

12Ua21G~12nd!~~p1Nc
21!211nd2l12nd!, ~33!

behaves for smallp linear inp. The longitudinallocalization
length Nc characterizing the adsorbed state will be defined
from the requirement that~33! behaves linear inp for small
p

12Ua21G~12nd!~~p1Nc
21!211nd2l12nd!

512Ua21G~12nd!~Nc
12nd2l12nd!1Ua21G

3~22nd!Nc
22ndp1•••50up→0. ~34!

Adsorption occurs if~34! possesses a positive solution for
Nc . The latter is obtained from Eq.~34! as

Nc5S l12nd2
nd21

Ua21G~22nd! D
1/~12nd!

. ~35!

The latter applies for both 12nd.0 and 12nd<0. Appar-
ently the marginal dimension is given by 12nd50. This
result can be verified by using de Gennes’ original scaling
argument@11#. Just at the marginal dimension theNc is ob-
tained from~34! as

Nc5l exp~a/U !,

so that the localization length have an essential singularity on
U. When 12nd.0 the microscopic lengthl can be put to
zero. In this case we recover the known result for adsorption
of self-avoiding walks on penetrable interfaces@1#.

In the opposite case we can rewrite Eq.~35! in the fol-
lowing form:

Nc.lS Tc2T

Tc
D 21/f

. ~36!

where we have introduced the crossover exponent

f5nd21 ~37!

and the critical temperature given by

kTc5
lE

a

G~22nd!

nd21
. ~38!

Because of the cutoff value ofl and the corresponding char-
acteristic dimensionw of the object the attractionU must be
regarded as interaction energy at the scalew. Consequently
the relation betweenU and the interactionE which is inde-
pendent of the size of the defect is given by

U5~w/ l !dE5lndE. ~39!

Equation~38! has a simple interpretation. The chain pen-
etrates the defect withl monomers. Hence, the net interac-
tion is of the orderEl. The attraction of the defect becomes
strong ifEl is comparable to the thermodynamic degree of
freedom of the chainkT. Thus Eq.~38! reflects the crossover
condition to the strong adsorption limit. Notice that above
the marginal dimension weak adsorption is impossible. No-
tice that Eq.~36!, in particular the cross-over exponentf
given in Eq.~37!, is independent of the realization ofl(w)
as discussed below Eq.~32!.

The mean distance of the free end of the polymer chain to
the surface is obtained by:

r z;Nc
n;S Tc2T

Tc
D 2n/f

. ~40!
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What is the effect of the self-avoidance on the adsorption
of the polymer chain? For a plane, weak attraction always
causes an adsorption for both Gaussian and self-avoiding
chains. A Gaussian polymer also adsorbs weakly on a pen-
etrable cylinder. Due to excluded volume (n.1/2) the sign
of 12nd changes ford52 @see Eq.~35!#, so that a self-
avoiding polymer adsorbs on a penetrable cylinder only
when the attraction energy exceeds some threshold value.
The solvent quality, which is reflected by the constanta,
may significantly influence the adsorption behavior of poly-
mers at cylinderlike and spherelike defects (d52, 3). The
constanta depends on the strength of the excluded volume
interaction according to:U as a.v0

2/«(2n21) (v0 is the ex-
cluded volume strength,«542D, D is the space dimen-
sion!. The increase ofU and consequentlya can be achieved
due to the change of the quality of the solvent. According to
~40! the increase of the quality of the solvent can induce a
desorption of a polymer chain from a cylinder or sphere. The
latter may have practical relevance for biological applica-
tions.

V. CONCLUSION

In the first part of the article we have investigated the
adsorption of polymer chains at asymmetric penetrable inter-
faces. This situation differs from polymer adsorption at
simple penetrable interfaces as well as from that at solid
surfaces. Experimental realizations could be both homopoly-
mers at membranes separating two different media, but also
copolymers at interfaces between two phases. We have fo-
cused on the most general features of this adsorption prob-
lem by considering a generic potential model for the asym-
metric interface as given in Fig. 1 and Eq.~1! comprising the
characteristic properties.

In contrast to adsorption at symmetric penetrable inter-
faces the asymmetry produces a finite adsorption threshold,
characterized by the desorption temperatureTc as given in
Eq. ~10!. Around this temperature, critical fluctuations cause
scaling behavior resulting in crossover length scales such as
given in Eq. ~13!. For ideal chains this problem has been
solved exactly. Starting with the Green’s function at the po-
tential step only@Eq. ~17!#, the influence of an additional
delta-like adsorption site can be calculated using the identity
given in Eq.~18!. However, even the solution for the poten-
tial step is the key to interesting problems of copolymer ad-
sorption. Consider for instance an amphophilicAB-diblock
copolymer made of an hydrophobic part of lengthNA and an
hydrophilic part of lengthNB . If this diblock is placed near
an oil-water interface, it may adsorb. For each block the
interface represent a potential step of heightxA and xB ,
respectively. The exact solution for the case without self-
interactions is then given by folding the Green’s functions
for individual blocks, which are given by Eq.~17!.

The exact solution for the adsorption on an asymmetric
interface @Eqs. ~17! and ~18!#, provides the full crossover
behavior for finite chains, which goes beyond the ground
state dominance. The first preasymptotic term is given in Eq.
~28!, the full solution in terms of the chain length variable is
presented in the Appendix.

The second part of the article is devoted to the problem of
polymer adsorption at penetrable cylinderlike and spherelike

defects. In the case of adsorption at asymmetric interfaces
the finite adsorption thresholdTc is a direct consequence of
the jump of the potential at the interface. In the case of
adsorption of a polymer chain on a sphere the finite adsorp-
tion threshold is implicitly caused by the reduction of the
return probability of the free end of the polymer chain to the
sphere. Adsorption is only possible under condition that the
temperature is lower than a finite temperatureTc and the
defect has a finite extensionw. The latter circumstance might
be compared with the fact that the bound state of a quantum
mechanical particle in a flat two-dimensional~2D! or 3D
potential well, explicitly depend on both the depth and the
width of the well. Summing the renormalized perturbation
series of the Green’s function in powers of the adsorption
potential we have obtained that the regime of weak adsorp-
tion of a self-avoiding polymer chain on an extended defect
of dimensiond (d51 corresponds to flat interface! occurs
for nd,1. The extension of Eq.~31! to d52, 3, which is
possible by introduction of a microscopic length associated
with the transversal extension of the defect, enables one to
describe the adsorption of self-avoiding polymers on pen-
etrable cylinder and sphere. In the vicinity of the threshold
temperatureTc , we have derived a new scaling behavior for
the localization lengthNc of the chain and the mean-square
distance of the free end of the chain to the defect, which are
given by Eqs.~36! and ~40!, respectively. In particular, the
crossover exponentf relating the characteristic chain length
Nc to the distance to the critical point is given by
f5nd21. It appears that the solvent quality characterized
by the excluded volume strengthv0 influences the threshold
temperature. An increase of the solvent quality causes a low-
ering of the critical temperature and consequently may lead
to polymer desorption from the defect. This may be of inter-
est for biopolymer science.
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APPENDIX: INVERSE LAPLACE TRANSFORMS
OF Z p AND N p

In this appendix we give the result of the inverse Laplace
transform ofZp andYp defined by~22! and ~23!, which are
necessary to computêr z

2(N)& for arbitrary arc lengthN of
the polymer. After a tedious but straightforward calculation
the inverse Laplace transforms of the numerator and denomi-
natorZp andYp are obtained as

ZT5
D

ux H eb2TFb32b13

b2b12 @erf~bAT!2erf~b1AT!#

1
1

b
erfc~bAT!2

1

b1erfc~b1AT!G1S e2T

b1 2
1

b D
3~122uAT/p!1S e2T

b12erfi~AT!2
1

b2erf~AT!D
1T@~e2T/b1! 1F1~1/2;2;T!1~1/b! 1F1~1/2;2;2T!#
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1E
0

T 1

Ap~T2t!
F S eb2t

b1

b
2eb12t2T

u

b1D
3erfc~b1At!2S eb2t

u

b

1eb12t2T
b

b1D erfc~bAt!GdtJ ~A1!

YT5
eb2T

2 F12erf~bAT!1
b1

u
@erf~b1AT!2erf~bAT!#G

1E
0

T 1

2uAp~T2t!
bb1@eb2terfc~b1At!

2eb12t2Terfc~bAt!#dt1
1

2E0
T e2t

pAt~T2t!
dt,

~A2!
where the quantities u5 lU 0 /AxD, T5xN,
b5(12u2)/(2u) and b15(11u2)/(2u) are introduced.
1F1 is the Kummer hypergeometric function, and
erfc(x)512erf(x), erfi (x)52 ierf(ix), with erf(x) being
the error function. The condition, whether the chain is ad-
sorbed or desorbed, can be read from the asymptotic behav-
ior of Eqs. ~A1!, ~A2!. The behavior for largeT essentially
depends on the sign ofb (b,0 corresponds to adsorption!
or equivalently on the conditionlU 0,AxD ~desorption! and
lU 0.AxD ~adsorption!. In the case whenb.0, we have
from ~A1! and ~A2! ZT;T1/2 andYT;T21/2, which means,
that the chain is desorbed. The result of numerical evaluation
of ^r z

2(N)&5ZT /YT with ZT andYT given by~A1! and~A2!
is shown in Fig. 3. The expressions~A1! and~A2! cannot be

evaluated analytically. Forb,0 one can give simplified ap-
proximate expressions forZT andYT enabling on to compute
^r z

2(N)& with a good accuracy. In this approximate compu-
tation ofZT andYT we took into account the main contribu-
tion from the terms in~A1! and ~A2! proportional toeb2T

and the leading term in the remainder. This gives the follow-
ing approximate expression of^r z

2(N)&:

^r z
2~N!&;

2D

ux F 1b 2
1

b1 1S b

b12 2
3b12b

b2 Derf~bAT!

1S b1

b2 2
3b2b1

b12 Derf~b1AT!

1
2

b
~b12b11!AT/pe2b2TG

3@12$11b1~b1b1!%erf~bAT!

1$12b~b11b!%erf~b1AT!#. ~A3!

In the limit N→` Eq. ~A3! gives

r z
25

2D

ux S b1

b2 2
b

b12D , ~A4!

which coincides after using the notations of Sec. III with
~27!. The first preasymptotic term to~A4! is obtained from
~A3! as

^r z
2~N!&;r z

21
D

uxb
~b12b11!AT/pexp~2b2T!,

~A5!

which again coincides after using the notations of Sec. III
with Eq. ~28! obtained by using the Watson’s lemma.
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