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By using the Green’s function approach we consider the adsorption of a Gaussian polymer chain on a flat
attractive interface separating two different media. The asymmetry of the potential requires a finite attraction
for adsorption. We have calculated the size of the polymer in the direction perpendicular to the interface for
arbitrary chain length. We also consider the adsorption of a self-avoiding polymer on a penetrable cylinderlike
and spherelike defect. The method used enabled us to describe the adsorption below the threshold temperature
T.. We predict scaling of the crossover chain lentithjust below T, of the form N~ (T.—T) ¥%. The
crossover exponeng is given by ¢=vd—1 with d= 2,3 for the case of the cylinder and the sphere, respec-
tively. The expression, which we derive fdg, shows that increasing the solvent quality low&gsand may
therefore cause polymer desorptip81063-651X96)11809-3

PACS numbds): 61.25.Hqg

I. INTRODUCTION G(2,0;20,0)= 8(2,2,). 3

Adsorption of polymers at surfaces and interfaces is ondhe constanD is defined through
of the most intensively studied topics in polymer science )
[1-5]. The previous works consider both the adsorption of D=I/2d, 4
chains at penetrable interfaces and at impenetrable surfaces, A . .
While for the case of penetrable interfaces the adsorptio hered=1 in the present case. Because of the ideal chain
ﬁ]rgf gg:ﬁsc?ﬁebjnzﬁg?negnugsIQ?;QEEZI:( ;(;(S)gre;:ilgrs] ?;; F;%lﬁléiven in Eq.(1) all spatial directions are independent. There-

surfaces requires new critical exponents closely related wit Pre we can disregard the andy contributions. .
the surface transition in magnetic materials. It is straightforward to see that the asymmetric interface

The present work is concerned with a third case, that Opotent_ial given in I_E_q.(l) provides adesorption phase
polymer adsorption at penetrable lagymmetridnterfaces. transitionat some cr|t|_cal temperatufg; . Con5|der_|ng only
One can imagine a polymer chain adsorbed at a membrarjf€ ground state SOIUt.'(.)n of E_QZ) using the p(_)tentlal of Eq.
separating two different solvents. However, the probleml)- Then the probability of finding the chain's end at the

emerges originally fromAB-copolymer adsorption at inter- POSition z in the direction perpendicular to the interface
faces between two different solvenf§—8]. The generic when the first segment is directly at the interface is given by

model of an asymmetric interface potential may be estabtN€ ground state eigenfunctiay, of Eqg. (2) according to

lished as follows: Krk,

V(z)=—-1Uy8(2)+ x0(2), (1) ¢g:kR+k,_

[e %O (x) + ek @ (—x)] (5)

wherel denotes the statistical segment length &) is with the conditions

the step function® (x) = [* ..dyd(y). The symboly denotes

the asymmetry of the interface amnt, represents the effec- k|_+kR=|U—O= i (6)
tive interface attraction per statistical monomer unit. For D JD
simplicity we takekT=1. The above equation can be con-
sidered as the simplest nonsymmetric interface model corand
taining all the basic features. Figure 1 illustrates the abstrac-
tions made in Eq(1). V(2) V(z)
For an ideal chain consisting df statistical segments the
Green'’s function in the direction obeys the following equa- 1 X
tion:
' i
aG(N O)DaZG(N 0)+V(z)G(z,N;z,,0) ;2'\—/ V2 )
N Z, ;201 - 2 Z, ;201 + z Z, ;201 T
N 9z -U -
0 lI(_)I o(z)
=0, 2
under the condition FIG. 1. Model of the asymmetric interface potential.
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Dk§= Dkf+ X 7) potential. Section Il presents the results for the adsorption of
a Gaussian polymer in the asymmetric potential for both
where we have introduced the symbol large and intermediate chains. Section IV presents results of
adsorption of a self-avoiding polymer chain on penetrable
U=I1U,/\D, (8 plane, cylinder and sphere. Section V contains our conclu-

. . . sions.
as also used in the later discussion.

Equations(6) and (7) together define the necessary con-

dition for existence of the ground state as
Il. THE GREEN'S FUNCTION OF THE POLYMER CHAIN

<UZ2 . - . . .
x<U © Let us consider the statistical weight of a configuration of

This defines a critical desorption temperature a polymer chain comprisin®l monomers interacting with
the interface. The ends of the chain are fixed at the positions
(10 ro andr, respectively. In the continuous chain representation

U2
Ty it reads:

kT.=

The average end position and the squared average end posi-

tion can be calculated from the above results r(N)=r d (N
G(r,N;ro,O)=f Dr(s)exp{ ——zf ds(ar/as)?
1 KE—K2 AUy (0)=ro 2%
(2)= = D——"H—, (1)
ki kg kpt kL (U= x)(U+x) N
- Casursn, 14
and 0

2 ki+k? 8UZ(U*+3x?)
kfkﬁ K+ K, (U2 )%(U%+ y)2" (12) whe.reV[rZ(s)] is the mteracpon energy Qf monomers with
the interfacd see Eq.1)], r, is the projection of the vector

For a finite chain lengtiN the ground state will dominate I in the direction perpendicular to the interfage=(r +r,)
for N>N¢ss Where the crossover chain lengh.sis  andry denotes the projection afin the direction parallel to
given by the interface.

It is easy to see that the statistical weight associated with
the distance of the polymer to the interface,,
G(r,,N;ro,,0)=fdr,G(r,,ry ,N;ro,0), will become a one-
dimensional problem, since the transversal degrees of free-
For N> Nssthe squared radius of gyratidkf is propor-  dom can be integrated out. We start with computing

tional to NcrosstF does not depend dd. Thus the chain is G,(r,,N;ro,,0) for the case when only the step potential in
adsorbed at the interface. However, frclose toN,ssthe (1) is nonzero. The differential equation for

ground state is no more absolutely dominant and also th . ; i
delocalized modes are contributing to the Green’s functiongx(rz'N’rO’z’o) 's obtained from(14) as
The crossover behavior from the adsorbed into the nonad-
sorbed state cannot be obtained. P
As soon as effects beyond the ground state dominance are -G, — DV%GX+ x9(2)G,=0, (15
taken into account the problem at hand becomes more com- N
plicated. We obtain the solution in terms of Green’s func-
tions in two steps. Firstly, the exact Green’s function is cal- ] ) )
culated for the polymer near the potential stgponly. Wherg we have used the notatiner, . It. is convenient to
Second, the Green’s function in the presence ofdipoten- ~ consider the Laplace transform &, with respect toN.
tial is obtained by exact summation of all diagrams for theThen Eq.(15) results in
additional interaction.
Note that even the simple potential step problem without
the attractive potential can be of significance. For instance, PG,—Py(2,2) ~DViG,+x0(2)G,=0,  (16)
the Green’s function of aAB-diblock copolymer made of a
A sequence of length, and aB sequence of lengtNg can
be obtained by folding the two Green’s functions for the wherep denotes the Laplace conjugate with respedt tand
andB part, respectively, under the condition that the step isPo(z,29) =G, (t=0,z;0,25). For the proper Green’s function
just mirrored and scaled for tHg part. This provides a so- Pg(z,z0)=6(z,z5) has to be required. We have obtained
lution for the ideal surfactant problem for all combinations of G, from the solution of(16) with an arbitrary initial condi-
xa and yg as well as for all possible block lengtig, and  tion Py(z,zg) in half planesz<0 andz=0 and appropriate
Ng. boundary conditions foe— *<«. Furthermore, we demand
The article is organized as follows. Section Il introducesthat the functions and their derivatives are continuous at
to the computation of the Green’s function in the asymmetriz=0. The result can be written as

(%)=

4 X -2
Ncross:m 1_m . (13
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G(rz!p;rO,z):GX(rz-p;rO,z)

IUoG,(0,p;ro,)
1-1U4G,(0,p;0)

+ + + ... —G,(r,,p;0)

., (18

FIG. 2. Examples of diagrams representing the perturbation Gith

) O . G, (r,,p;r iven by Eq.(17).
pansion of the Green’s function in powers of the external potential. ((2,Pil02) 9 y Eq.(17)

So far we have focused on the one-dimensional problem.
This was possible by fixing only the transversal position of

\/B_ /_p+X the end of the polymer chain,(N). For applications it may
G,(z,p;20)=| Go(2—2,p)O(—29) + ——F—— be relevant to study the adsorption of the polymer with fixed
\/B+ Vp+x longitudinal position too. The Green'’s function including the
transversal variables is also necessary to study the adsorption
X Go(Z+2,p)O (— 2o) + 2Vp+x of self-avoiding chains on interfaces separating different sol-
0 0 0 \/B+‘/P+X vents. I_n order to get 'the complete Green's function it is
convenient to consider the Fourier transform of
G(r,,ryr Niroz,ror,0) with respect tory, . Instead of Eq.
Xexp(zyp/D)Go(zo,p+ x)O(20) |O(-2) (16), we now have to solve the following differential equa-
tion:
+{Go(z—zo,p+)()®(zo)+ VpEx=p (p+Dk{)G—Gy(2,20,ky) ~DV3G+x0(2)G=0,
VP x+p (19
2\/6 where G=G(p,z,k;,) is the Fourier transformation of the
XGo(z+20,p+x)O(20) + Jotvyotx solution with respect ta,, and the Laplace transformation

with respect tot. It becomes apparent by comparing Egs.

(16) and (19) that the d-dimensional Green’s function
><exp(—z\/(p+)()/D])Go(zo,p)®(—zo)} G(r, Ky ,piro,) (Fourier transformed with respect to

Iy —ry o) is obtained from Eq(18) by replacing the Laplace
X0 (2). (17  Variablep throughp-+ DkZ

Ill. ADSORPTION OF A GAUSSIAN POLYMER

where Gy(z,p)=1/(2yDp)exp(—|Zyp/D) is the Laplace IN'AN ASYMMETRIC POTENTIAL

transformation of the Green’s function of the ideal polymer |n order to consider the adsorption of a polymer on a flat
chain. Equation(17) correctly reproduces the limit case interface we fix one end of the chain on the plang,&0)
x=0 and y=c. For y—= G,(z,p;Z,) gives the Green's and compute the average distance of the free chainrgnd
function for a half space with the boundary condition The mean-square distance of the free end of the polymer
G(z;p,20),=0=0. The corresponding result to E(L7) for  chain to the interface is computed according to
the case of a Schdinger particle near a potential step was
. . . 2 . 0

recently obtained by GroscH®] using path integral meth- 2oy JAre fdrr;G(ry,ry ,N;Ory;,0)
ods. Grosche starts with the explicit result for a smooth in- {rz2(N))= Jdre fdr,G(ry,re ,N;0r0.0)
terface potential of the forny/[ 1+exp(—2z/R)]. In the limit
R—0 the gquantum mechanical counterpart of Efj7) is  The problem becomes again one-dimensional after integrat-
obtained. ing overr,, . Using the Laplace transform of the numerator

We now turn to the case of the full potential given in Eq. and denominator of E¢20) we can write
(1). The idea is to start with the path integral representation
of G(r,,N,0,0) given by Eq(14) and expand it in powers of <r2 y= é (21)
the § function by using the Green’s function in the step “PTY
potential as the reference state. The perturbation expansion
can be represented by means of diagrams consisting of W
continuous lines, representing the polymer chain, and inser- 2D D324 (p+ y) 2
tions along the line due to the interaction with the plane. This Z = X . (2
is sketched in Fig. 2. The integrations over the positions of  Jp+Vptx 1-1UD Y (Vp+ Vptx)
the monomers along the chditme variables) and over their
spatial positions ,(s) are assumed in each vertex. The inte- 1 1
grat.ion overr,(s) is killed through thes function. It is. con- Yp:[p(p+x)]l/2 1—|U0D_1/2/(\/5+ \/|0+_X) - (23
venient to carry out Laplace transformation of
G(r;,N;rq2,0) with respect to the chain lenghh The sum- Z, andY, have a pole at a finite value qf
mation of the perturbation series in Fig. 2 is straightforward
and we obtain pin=(U%=x)?/(4U?), (24)

(20

th Z, and Y, obtained from(18) respectively, as

2)




3902 STEPANOW, BAUERSCHAER, AND SOMMER 54
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‘\7N 1.0 : + + +
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PR Eq (A3)
054 -=o= Eq. (Ad)
- = By FIG. 4. Examples of diagrams representing the perturbation ex-
pansion of the Green’s function in powers of the external potential
0.0 : . r . . — . . and excluded-volume interaction.
0 2 6 8

4
N the adsorption of polymer chains for arbitrary finite length
N. The result of the numerical computation Cﬁ(N)) is
FIG. 3. The mean-square distance of the free end of the polymeshown in Fig. 3.

chain to the interface as a function of chain length. The thick con-
tinuous line is the exact result computed by usiad)—(A2). The
point line represents E¢A3). The dash line gives the approximate
result computed by usinA5). The thin line gives the asymptotic

IV. ADSORPTION OF A SELF-AVOIDING POLYMER
CHAIN ON A PLANE, LINE, AND POINT

value ofr? given by (A4). In this section we consider the adsorption of a self-
avoiding polymer chain on various defects such as plane,

with U given by Eq.(8) if the condition line, and point. We will see below that the line, and the point
imitate penetrable cylinder and sphere, respectively. The

U?>x (25  chain is fixed with one end on the defect. We will describe

plane, line, and point by dimensionality whered takes the
is satisfied. Notice that the chain length associated witalues 1, 2, 3 for plane, line, and sphere, respectively.
Pth s Analogous to the adsorption on the asymmetric potential
we expand the Green'’s function in powers of the adsorption
Ne=py =4U%/(U2=x)?, (260 energyU, and the excluded volume interaction. The ex-
cluded volume interaction has a twofold effect. On the one
can be interpreted as the longitudinal localization length. lthand it renormalizes the bare Green’s functions, which are
corresponds to the average length between two neighbeissociated in Fig. 4 with the parts of continuous lines be-
contacts of the polymer with the interface. Compare it withtween the insertions), (second and fifth diagramslue to
the crossover chain leng,,ssgiven by Eq.(13). Also the  the adsorbing potential. The latter is given by
result(25) can be directly compared with E€P). In the limit
of large chain lengthd\—< the main contribution of the
inverse Laplace transform appears from the residue associ-s&
ated with the pole. This pole gives an exponential increase of 4 2 o1 —1ni—
the inverse Laplace transforms 8f andY, proportional to =2, (NZ31Zp) " =2Z,7a" N7, (29
g)e(?](;\lrﬁ'gé;?I(S)K?&fogoc?g?fa esart:Sst fégrens trr:(()at r(]juen‘:;%ﬁ;andwherea is a constant which depends on the solvent quality,

The interpretation of this circumstance is that the pol merj'e'.' characterized the strength of the expluded volume inter-
P oty ction. The counterterni, andZ; scale with the length as

chain is adsorbed on the interface. The computation og Z(=1)w o

; 2 _ 2 : : Pd B andZ;~17, wherev, y, and» are the critical

fimy-(rz(N)) =z is straightforward and results in exponents oh=0 componentb* theory[12] and[13]. The

U+ 3)2 1 quantityN’=NZ,/Z, scales a®?”. This can be obtained by
> > — >, (27) identifying the length | with the gyration radius

(U7 (U=Xx) Ry~ (N")*?in the expressions df, andZ; and solving the

. . . ) . obtained equation faX'. Notice thatd in (29) is restricted to
in accordance with the ground state solution given in Edy,qo ondition vd<1. The reason is that ford<1 the

(12). The first preasymptotic term ®7) is obtained from | jo506 transformation of the last expression(29) with

(22) and(23) by using Watson's lemmgL0] as respect toN exists. Forvd<<1 the renormalization ir{29)

. can be carried out at zero momentiln so that the coun-

2 _ .2 2D p( (x—U%) ) tertermZ, is controlled by the lengtiN of the polymer. For
(rg(N))=r;— —=——=—JNexp ———>—N|. - RPN " " .

Jm(U—1y) 4U d=3, Gg4(r,=0,N;0) is the partition function of a ring

(29 polymer. The renormalization has to be carried out at the
momentumk,, which is inversely proportional to the dis-
The exact inverse Laplace transformationg2ff) and (23),  tance between polymer ends. Forr,—0, Z, tends conse-
which is carried out in the Appendix, enables one to studyguently to one(see alsd13], Chap. XIil; [4], Chap. ).

(r,=0N;0)= f d%,Gq,, (k,N;0)

r2=8DU?
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The excluded volume interactions between the segments  1-—uUa 'I'(1- vd)((p+ Nc—l)—1+ vd_\1-vd)
being on different sides of the insertiap (see the fourth
diagram in Fig. 4renormalize the adsorption energy. We =1-Ua T(1-vd)(Ng "=\ +Ua T
have computed the renormalization Of, up to one-loop
order in the excluded volume strengih and obtained that
the adsorption energy renormalizes likg. One can show
that this is true to all orders ing, so thatU, renormalizes as

X (2—vd)NZ™"Ip+---=0|, 0. (34)

Adsorption occurs if(34) possesses a positive solution for
N.. The latter is obtained from Eq¢34) as

UI’: Uozz. (30) - vd—1 1/(1—wvd)
The universal part of the perturbation expansion of the Ne=| A Ua I'(2—vd) ' (35
Green'’s functiorG(r,,p;0) in powers of the adsorption en-
ergy can be summed up exactly to give The latter applies for both-1 vd>0 and 1- vd<0. Appar-
ently the marginal dimension is given by-vd=0. This
. Gsa(rz,p;0) result can be verified by using de Gennes’ original scaling
G(rz,p;0)= 1—1U(Z,G4,,(0,p;0) argumenf11]. Just at the marginal dimension thk is ob-
tained from(34) as
_ Gsa(rz,p;0) -
T 1-Ua T(1—wd)p T4 (3D N.=\ expa/U),

We see that the counterte@y appearing from the renormal- SO that the localization length have an essential singularity on
izaton of U compensates the prefactoZ,® in U. When 1-vd>0 the microscopic length can be put to

Gew(ON;0). Exactly due to this compensation the de Z€r- In this case we recover the known result for adsorption

Gennes’ probability argumefit] gives correct result for ad- ©f Self-avoiding walks on penetrable interfadas.
sorption on penetrable interfaces. The appearenceimthe In the opposite case we can rewrite E85) in the fol-
nominator is a direct consequence of the resummation prd®Wwing form:

cedure. However, it is already knowB] that at the critical

point of adsorption the fractal dimension of the chain re- ch)\(
mains unchanged. Notice that E@31) is defined for

1—-vd>0. However, the expressidBl) can be extended for
1-vd=0 by introducing a cutoff on the microscopic lengths
(along the chaip\, so that the denominator ¢81) will be

TC—T) 4

T (36)

where we have introduced the crossover exponent

replaced for - vd<0 by ¢=vd—1 (37)
1-Ua T(1-vd)(p 1" vd_ )\ 1-vd) (32) and the critical temperature given by

where A should correspond to the characteristic extension C:EM (38)

w of the cylinder or sphere. Apparently we have a wvd-1

(w/1)4=x\"4 whenw is much larger than the statistical seg- ,
ment of the chain. Note that we have implicitely assumed irB&cause of the cutoff value afand the corresponding char-
Eq. (32) that the Green’s functio®,(0,0,0) is governed acteristic dimensiow of the object the attractiod must be
by its universal behavior down to the cutoff valnelf wis ~ régarded as interaction energy at the seal&Consequently
of the order of the segment length we may hawé=X\. At the relation betweeb) and the interactiofc which is inde-
the same time the cutoff term in E(82) has to be replaced Pendent of the size of the defect is given by

by a functionA(w/l) depending on the microscopic details . de_ + »d

of the chain statistics at the scale However, as we proceed U= (W) E=\"E. (39
to show this impacts only the value @f [see Eq.(38) be-
low], which is a nonuniversal quantity depending on the mi-
croscopic details of the problem. It has no consequences f
the critical behavior(scaling near T.. For simplicity we
discuss here the case>|. The condition for adsorption is

Equation(38) has a simple interpretation. The chain pen-
etrates the defect with monomers. Hence, the net interac-
Qon is of the ordeiEN. The attraction of the defect becomes
strong if EA is comparable to the thermodynamic degree of
' . . freedom of the chaik T. Thus Eq.(38) reflects the crossover
associated with the pole of E(B2) [compare with Eqs(l22) condition to the strong adsorption limit. Notice that above

and (23)]. . . . B . ]
The condition for adsorption can be also obtained fromthe marginal dimension weak adsorption is impossible. No

: tice that EqQ.(36), in particular the cross-over exponet
(31) by demanding that the pole, given in Eq.(37), is independent of the realization nf{w)

1-Ua T(1-vd FNDL)-LHrd_\1-wdy (33 as discussed below E¢32).

(1=vd)((p+N¢ ) ) (33 The mean distance of the free end of the polymer chain to
behaves for smalp linear inp. The longitudinalocalization ~ the surface is obtained by:
length N, characterizing the adsorbed state will be defined
from the requirement thdB3) behaves linear ip for small erNEN(

p

T—T| "¢
) : (40

Te
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What is the effect of the self-avoidance on the adsorptiordefects. In the case of adsorption at asymmetric interfaces
of the polymer chain? For a plane, weak attraction alwayshe finite adsorption thresholE; is a direct consequence of
causes an adsorption for both Gaussian and self-avoidingpe jump of the potential at the interface. In the case of
chains. A Gaussian polymer also adsorbs weakly on a peradsorption of a polymer chain on a sphere the finite adsorp-
etrable cylinder. Due to excluded volume> 1/2) the sign tion threshold is implicitly caused by the reduction of the
of 1—vd changes fod=2 [see EQq.(35)], so that a self- return probability of the free end of the polymer chain to the
avoiding polymer adsorbs on a penetrable cylinder onlysphere. Adsorption is only possible under condition that the
when the attraction energy exceeds some threshold valueemperature is lower than a finite temperatdig and the
The solvent quality, which is reflected by the constant defect has a finite extensian The latter circumstance might
may significantly influence the adsorption behavior of poly-be compared with the fact that the bound state of a quantum
mers at cylinderlike and spherelike defects<2, 3). The mechanical particle in a flat two-dimension@D) or 3D
constanta depends on the strength of the excluded volumepotential well, explicitly depend on both the depth and the
interaction according tot) asa=v3*?""1) (v, is the ex-  width of the well. Summing the renormalized perturbation
cluded volume strengthy=4—D, D is the space dimen- series of the Green’s function in powers of the adsorption
sion). The increase of) and consequentlg can be achieved potential we have obtained that the regime of weak adsorp-
due to the change of the quality of the solvent. According tdtion of a self-avoiding polymer chain on an extended defect
(40) the increase of the quality of the solvent can induce &f dimensiond (d=1 corresponds to flat interfaceccurs
desorption of a polymer chain from a cylinder or sphere. Thdor »d<1. The extension of Eq.31) to d=2, 3, which is

latter may have practical relevance for biological applica-Possible by introduction of a microscopic length associated
tions. with the transversal extension of the defect, enables one to

describe the adsorption of self-avoiding polymers on pen-
etrable cylinder and sphere. In the vicinity of the threshold
temperaturd ., we have derived a new scaling behavior for

In the first part of the article we have investigated thethe localization lengtiN. of the chain and the mean-square
adsorption of polymer chains at asymmetric penetrable interdistance of the free end of the chain to the defect, which are
faces. This situation differs from polymer adsorption atgiven by Eqs.(36) and (40), respectively. In particular, the
simple penetrable interfaces as well as from that at soli¢fossover exponens relating the characteristic chain length
surfaces. Experimental realizations could be both homopolyNc to the distance to the critical point is given by
mers at membranes separating two different media, but als¢=vd—1. It appears that the solvent quality characterized
copolymers at interfaces between two phases. We have f&y the excluded volume strength influences the threshold
cused on the most general features of this adsorption proemperature. An increase of the solvent quality causes a low-
lem by considering a generic potential model for the asymering of the critical temperature and consequently may lead
metric interface as given in Fig. 1 and E@) comprising the 0 polymer desorption from the defect. This may be of inter-

V. CONCLUSION

characteristic properties. est for biopolymer science.
In contrast to adsorption at symmetric penetrable inter-
faces the asymmetry produces a finite adsorption threshold, ACKNOWLEDGMENTS

characterized by the desorption temperatiigeas given in

Eq. (10). Around this temperature, critical fluctuations cause J.U.S. acknowledges support from the Deutsche Fors-

scaling behavior resulting in crossover length scales such @ungsgemeinschafGrants Bi 314/6 and Schu 934/3-2

given in Eg.(13). For ideal chains this problem has been

SOlV'Ed exaCtly. Starting with the Green'’s function at. the po- APPENDIX: INVERSE LAPLACE TRANSEORMS

tential step only[Eq. (17)], the influence of an additional OF Z. AND N

delta-like adsorption site can be calculated using the identity P P

given in Eq.(18). However, even the solution for the poten-  In this appendix we give the result of the inverse Laplace

tial step is the key to interesting problems of copolymer ad+{ransform ofZ, andY,, defined by(22) and(23), which are

sorption. Consider for instance an amphoph#AiB-diblock  necessary to compu(ei(N)) for arbitrary arc lengtiN of

copolymer made of an hydrophobic part of lendthand an  the polymer. After a tedious but straightforward calculation

hydrophilic part of lengtiNg . If this diblock is placed near the inverse Laplace transforms of the numerator and denomi-

an oil-water interface, it may adsorb. For each block thenatorZ, andY, are obtained as

interface represent a potential step of height and yg,

respectively. The exact solution for the case without self- D .| B3—pB*3

interactions is then given by folding the Green’s functions Zy=—1 e#'T —W[erf(ﬁ\/f)—erf(ﬂﬂ/f)]

for individual blocks, which are given by E¢L7). ux BB
The exact solution for the adsorption on an asymmetric

: . 1 1 e’ 1
interface [Egs. (17) and (18)], provides the full crossover + Zerf T — —erfc( 8" VT |+ | — - =
behavior for finite chains, which goes beyond the ground B oBT) B* (B"T) B B
state dominance. The first preasymptotic term is given in Eq. .

(28), the full solution in terms of the chain length variable is —_ e 1
presented in the Appendix. X (1=2uyT/m)+ Werﬁ( Ok ?erf( VT)

The second part of the article is devoted to the problem of
polymer adsorption at penetrable cylinderlike and spherelike +T[(e"T/B") {F1(1/2;2:T)+(1B) 1F1(1/2:2;—T)]
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T 1 [( , B* s U ) evalt_Jated analytic:_;llly. Fg8<0 one can give simplified ap-
+ j — || ef T —ef T T proximate expressions fa; andY+ enabling on to compute
0 ya(T—17) B B (r2(N)) with a good accuracy. In this approximate compu-
u tation of Z; and Y+ we took into account the main contribu-
xerfc(B* \/;)— ( ef’r= tion from the terms in(Al) and (A2) proportional toe’T
B and the leading term in the remainder. This gives the follow-

P ing approximate expression 6f2(N)):
+ efﬁzf‘T—) erfc(ﬁ\/;)ldr] (A1) v
g (N~ | = et | o 2 fertT)
o ux |8 B B B
€ i + +
Yr= - 1-eri( V™) + 2 perit g V) —erfi )] +(ﬁ_2 3 )erf( )
B B*
T 1 r g2, + 2 2
+Lmﬂﬁ [ erfo( " 7) + (BT =B+ 1)\ Tlme ? T}
—eF U Tertq 8 ﬁ)]dﬁ% fT ¢ 4 X[1={1+B%(B+ B )}erf(BVT)
OmTTTT g H1- BB+ B)leri(BT) 1. (A3)
where  the  quantites u=IUg/\VxD, T=xN, In the limit N—o Eq. (A3) gives
B=(1—-u?/(2u) and B"=(1+u?)/(2u) are introduced.
1F, is the Kummer hypergeometric function, and , 2D(B" B Al
erfc(x)=1—erf(x), erfi(x)=—ierf(ix), with erf(x) being =\ B B2 (A4)

the error function. The condition, whether the chain is ad-

sorbed or desorbed, can be read from the asymptotic behawhich coincides after using the notations of Sec. Il with
ior of Egs. (A1), (A2). The behavior for largd essentially ~ (27). The first preasymptotic term tA4) is obtained from
depends on the sign @ (B8<0 corresponds to adsorptipn (A3) as

or equivalently on the conditiolJ <<+ yD (desorption and D

IUo>+/xD (adsorption. In the case whe8>0, we have (r3(N))~r2+ —(B* — B+ 1) T/ mexp — B2T),
from (A1) and (A2) Zt~TY2 and Y;~ T~ 2 which means, uxg (AB)
that the chain is desorbed. The result of numerical evaluation

of (rg(N))=ZT/YT with Z1 and Y+ given by(Al) and(A2)  which again coincides after using the notations of Sec. llI
is shown in Fig. 3. The expressiof&l) and(A2) cannot be  with Eq. (28) obtained by using the Watson's lemma.
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